10 research outputs found

    Electric circuit model of microwave optomechanics

    Full text link
    We report on the generic classical electric circuit modeling that describes standard single-tone microwave optomechanics. Based on a parallel RLC circuit in which a mechanical oscillator acts as a movable capacitor, derivations of analytical expressions are presented, including key features such as the back-action force, the input-output expressions, and the spectral densities associated, all in the classical regime. These expressions coincide with the standard quantum treatment performed in optomechanics when the occupation number of both cavity and mechanical oscillator are large. Besides, the derived analytics transposes optical elements and properties into electronics terms, which is mandatory for quantitative measurement and design purposes. Finally, the direct comparison between the standard quantum treatment and the classical model addresses the bounds between quantum and classical regimes, highlighting the features which are truly quantum, and those which are not

    Nanomechanical damping via electron-assisted relaxation of two-level systems

    Full text link
    We report on measurements of dissipation and frequency noise at millikelvin temperatures of nanomechanical devices covered with aluminum. A clear excess damping is observed after switching the metallic layer from superconducting to the normal state with a magnetic field. Beyond the standard model of internal tunneling systems coupled to the phonon bath, here we consider the relaxation to the conduction electrons together with the nature of the mechanical dispersion laws for stressed/unstressed devices. With these key ingredients, a model describing the relaxation of two-level systems inside the structure due to interactions with electrons and phonons with well separated timescales captures the data. In addition, we measure an excess 1/f-type frequency noise in the normal state, which further emphasizes the impact of conduction electrons

    Optomécanique micro-onde à ultra-basses températures pour la détection quantique

    No full text
    Recent advances in observing and exploiting macroscopic mechanical motion at the quantum limit brought opto-mechanical experiments down to always lower temperatures and smaller sizes, boosting a new research area were (more compatible) low energy photons are employed: microwave opto-mechanics. Superconducting microwave circuits are in use and bridge opto-mechanics with quantum electronics, which positions the former as a new resource for quantum information processing. But microwave opto-mechanical platforms provide also unique capabilities for testing quantum mechanics at the most basic level: if one thinks about these devices in terms of quantum-limited detectors, the focus is on the thermodynamic baths that continuously interact with the mechanical degree of freedom. The fundamental questions that are addressed are then quantum thermodynamics, the boundary between classical and quantum mechanics defined by wavefunction collapse, and ultra-low temperature materials properties. In order to perform such experiments at the frontier of modern physics, we created a unique micro-wave/micro-Kelvin opto-mechanical platform. We demonstrate for the first time the passive cooling of a 15 MHz aluminium drumhead mechanical device down to 500 micro-K, reaching a population for the fundamental mode of 0.3 quanta on average; all higher modes being empty to a very high probability. Using microwave opto-mechanics as a non-invasive detector, we report on the in-equilibrium thermal properties of this lowest frequency mode, challenging theory in an unprecedented experimental area.Les progrès récents dans l'observation et l'exploitation du mouvement mécanique macroscopique à la limite quantique ont poussé les expériences opto-mécaniques à des températures toujours plus basses et à des tailles plus petites, stimulant un nouveau domaine de recherche où des photons de basse énergie (plus compatibles) sont utilisés : l'opto-mécanique micro-onde.Des circuits hyperfréquences supraconducteurs sont utilisés et relient l'opto-mécanique à l'électronique quantique, ce qui positionne la première comme une nouvelle ressource pour le traitement de l'information quantique. Mais les plates-formes opto-mécaniques micro-onde offrent également des capacités uniques pour tester la mécanique quantique au niveau le plus élémentaire : si l'on pense à ces dispositifs en termes de détecteurs à la limite quantique, l'accent est mis sur les bains thermodynamiques qui interagissent en permanence avec le degré de liberté mécanique. Les questions fondamentales abordées sont alors la thermodynamique quantique, la frontière entre la mécanique classique et la mécanique quantique définie par l'effondrement de la fonction d'onde, et les propriétés des matériaux à ultra-basse température.Afin de réaliser de telles expériences à la frontière de la physique moderne, nous avons créé une plate-forme opto-mécanique micro-onde/micro-Kelvin unique. Nous démontrons pour la première fois le refroidissement passif d'un dispositif mécanique en tambour d'aluminium de 15 MHz jusqu'à 500 micro-K, atteignant une population pour le mode fondamental de 0,3 quanta en moyenne ; tous les modes supérieurs étant vides avec une probabilité très élevée. En utilisant l'opto-mécanique micro-onde comme détecteur non invasif, nous rapportons les propriétés thermiques en équilibre de ce mode de fréquence la plus basse, questionnant la théorie quantique dans un domaine expérimental sans précédent

    Optomécanique micro-onde à ultra-basses températures pour la détection quantique

    No full text
    Recent advances in observing and exploiting macroscopic mechanical motion at the quantum limit brought opto-mechanical experiments down to always lower temperatures and smaller sizes, boosting a new research area were (more compatible) low energy photons are employed: microwave opto-mechanics. Superconducting microwave circuits are in use and bridge opto-mechanics with quantum electronics, which positions the former as a new resource for quantum information processing. But microwave opto-mechanical platforms provide also unique capabilities for testing quantum mechanics at the most basic level: if one thinks about these devices in terms of quantum-limited detectors, the focus is on the thermodynamic baths that continuously interact with the mechanical degree of freedom. The fundamental questions that are addressed are then quantum thermodynamics, the boundary between classical and quantum mechanics defined by wavefunction collapse, and ultra-low temperature materials properties. In order to perform such experiments at the frontier of modern physics, we created a unique micro-wave/micro-Kelvin opto-mechanical platform. We demonstrate for the first time the passive cooling of a 15 MHz aluminium drumhead mechanical device down to 500 micro-K, reaching a population for the fundamental mode of 0.3 quanta on average; all higher modes being empty to a very high probability. Using microwave opto-mechanics as a non-invasive detector, we report on the in-equilibrium thermal properties of this lowest frequency mode, challenging theory in an unprecedented experimental area.Les progrès récents dans l'observation et l'exploitation du mouvement mécanique macroscopique à la limite quantique ont poussé les expériences opto-mécaniques à des températures toujours plus basses et à des tailles plus petites, stimulant un nouveau domaine de recherche où des photons de basse énergie (plus compatibles) sont utilisés : l'opto-mécanique micro-onde.Des circuits hyperfréquences supraconducteurs sont utilisés et relient l'opto-mécanique à l'électronique quantique, ce qui positionne la première comme une nouvelle ressource pour le traitement de l'information quantique. Mais les plates-formes opto-mécaniques micro-onde offrent également des capacités uniques pour tester la mécanique quantique au niveau le plus élémentaire : si l'on pense à ces dispositifs en termes de détecteurs à la limite quantique, l'accent est mis sur les bains thermodynamiques qui interagissent en permanence avec le degré de liberté mécanique. Les questions fondamentales abordées sont alors la thermodynamique quantique, la frontière entre la mécanique classique et la mécanique quantique définie par l'effondrement de la fonction d'onde, et les propriétés des matériaux à ultra-basse température.Afin de réaliser de telles expériences à la frontière de la physique moderne, nous avons créé une plate-forme opto-mécanique micro-onde/micro-Kelvin unique. Nous démontrons pour la première fois le refroidissement passif d'un dispositif mécanique en tambour d'aluminium de 15 MHz jusqu'à 500 micro-K, atteignant une population pour le mode fondamental de 0,3 quanta en moyenne ; tous les modes supérieurs étant vides avec une probabilité très élevée. En utilisant l'opto-mécanique micro-onde comme détecteur non invasif, nous rapportons les propriétés thermiques en équilibre de ce mode de fréquence la plus basse, questionnant la théorie quantique dans un domaine expérimental sans précédent

    Ultra-low temperatures microwave optomechanics for quantum sensing

    No full text
    Dans cette thèse, nous introduisons premièrement ce qu’est l’optomécanique ainsi que ce pourquoi les technologies basées sur cette physique peuvent-être utilisées. Nous présentons les systèmes optomécaniques comme étant d’une incroyable sensibilité en force/position et discutons de leurs extraordinaires capacités tel que la détection d’ondes gravitationnelles. De plus, les récents intérêts portant sur l’obervation et l’exploitation des mouvements mécaniques macroscopiques à la limite quantique nous ont amené à mesurer toujours plus bas en temperatures (ainsi qu’à réduire la taille des objects utilisés), ce qui à stimulé le développement d’un nouveau domaine de recherche dans lequel des photons de plus basse énergie (bien plus compatibles avec les basses températures) sont utilisés : l’optomécanique micro-onde. Des circuits micro-ondes supraconducteurs sont donc utilisés et font ainsi passerelle entre l’optomécanique et l’électronique quantique, ce qui positionne l’optomécanique microonde comme une nouvelle ressource pour le traitement quantique de l’information. Les plateformes optomécaniques micro-onde fournissent aussi des capacités uniques pour ce qui est de tester la mécanique quantique au niveau le plus basique. En effet, il ne fait aucun doute que la mécanique quantique s’applique à l’oscillateur harmonique qui représente le mouvement mécanique. Cependant, presque toutes les expérimentations se concentrent sur les deux modes (bosoniques) impliqués dans le couplage optomécanique, à savoir, le mode mécanique ainsi que le mode optique. La plupart des expérimentateurs s’appuient aujourd’hui sur le refroidissement optique actif pour amener l’unique degré de liberté mécanique sur lequel l’intérêt est porté au plus proche de l’état quantique fondamental. Ces objets mécaniques sont donc utilisés hors-équilibre, leur environnement directe étant essentiellement incontrôlé. Cependant, considérant ces systèmes en termes de détecteur opérant à la limite quantique, où devons nous concentrer notre attention ? Sur le bain bien sûr, celui-ci interagissant continûment avec le degré de liberté mécanique. A ce jour, ce n’est pas l’objectif suivi par la plupart des groupes de recherche, et seulement très peu d’expérimentateurs font face à ces questions. Dans ce cas, le sujet d’étude n’est plus le système lui-même, mais son bain environnant. L’objectif est donc de rechercher des déviations aux signatures attendues de l’impact de l’environnement sur la dynamique de la mécanique. Ces signatures pourraient être due à un certain type d’éffondrement stochastique lié par exemple à la gravité quantique. Pour étudier ce sujet, nous avons donc besoin de comprendre parfaitement les comportements des systèmes optomécaniques micro-onde en régime classique ainsi qu’en régime quantique. De plus, contrôler à la perfection leurs bains environnants est une nécessité. Ce projet extrêmement ambitieux requiert donc une expertise certaine en théorie quantique, en cryogénie (démagnétisation nucléaire), ainsi qu’en technologie micro-onde (détection à la limite quantique). Ces points sont le sujet de cette thèse expérimentale.In this thesis, we first introduce what is the field of optomechanics and for what use one can apply its related technologies. We present the amazing force/position sensitivity of optomechanical systems, and discuss some of their tremendous capabilities such as gravitational wave detection. Besides, the recent interest in observing and exploiting macroscopic mechanical motion at the quantum limit brought the experiments down to always lower temperatures (and also smaller sizes), which boosted a new area of research were (more compatible) low energy photons are employed: microwave optomechanics. Superconducting microwave circuits are thus in use and bridge optomechanics with quantum electronics, which positions the former as a new resource for quantum information processing. Microwave optomechanical platforms provide also unique capabilities for testing quantum mechanics at the most basic level. Obviously, there is no doubt that quantum mechanics applies to the harmonic oscillatorthatrepresentsthemechanicalmotion. However,almostallexperimentsfocusonthetwomodes (bosons) involved in the optomechanical coupling, namely the mechanical one and the optical one; andpeoplerelyonanactivecoolingschemetobringthesinglemotionaldegreeoffreedomonwhich their interest is focused as close as possible to the quantum ground state. These mechanical objects are thus operated out-of-equilibrium, their direct environment being kept essentially uncontrolled. Butifonethinksaboutthesedevicesintermsofquantum-limiteddetectors,whereshallthenbethe focus? It is obviously the bath that continuously interacts with the mechanical degree of freedom. To date, this is not the route followed by the main stream research, and only few experiments are tackling this issue. In this case the subject of the study is no more the device but its surrounding baths. What is thus looked for is deviations to the expected signature of the environment’s impact on the mechanical dynamics. These signatures could be due to any type of stochastic collapse, especially what is believed to stem from quantum gravity. We finally come to the point that for this purpose one obviously needs to understand perfectly the classical and quantum behaviors of these microwave optomechanical devices and that one absolutely needs to control their surrounding baths. This extremely challenging project thus requires expertise in quantum theory, ultimate cryogenics (nuclear demagnetization), and microwave technology (quantum-limited detection). These points are the subject of this experimental thesis

    Characterization of electromechanically induced absorption and transparency in microwave optomechanical device

    No full text
    International audienceMicrowave optomechanical circuitry is attractive for both fundamental research and quantum engineering as it gives microwave photons an ability to interact with mechanical phonons through radiation pressure [1]. In this scheme, a mechanical oscillator, a weak nonlinear component, also allows microwave signals to have frequency up/down conversion. When the system is side-band pumped by a microwave tone, the up/down converted photons will affect the interference of the input signal around the resonance frequency of the resonator, causing an electromechanically induced transparency/absorption (EMIT/EMIA) [2]. Here, we present a two-tone measurement performed with a microwave optomechanical scheme, a Si3N4 mechanical oscillator capacitively couples with a lumped element superconducting microwave resonator [3]. This experiment concentrated on investigating effects of the thermal phonon/photon and the input photon numbers on EMIT and EMIA efficiencies, especially on the transition from absorption to amplification. One of the typical measurement results is shown in Fig.1. We will also show quantitative fits of these experimental results based on our analytical calculations. Characterizations of the two-tone operation scheme in microwave optomechanical circuits are essential for developing mechanical microwave amplifications and filters in quantum engineering. Figure 1. 2D plot of the signal gain with different input power when the microwave resonator is the sideband pumped with a power of-40dBm, measured at different temperatures. Here, wc, wp, win, wm correspond to resonator resonance frequency, pump frequency, input signal frequency and resonance frequency of mechanical oscillator. [1] M. Aspelmeyer, et al, Rev. Mode. Phys. 86, 1391 (2014) [2] F. Hocke, et al, New J. Phys. 14, 123037 (2012) [3] X. Zhou, et al, arXiv:1903.0499

    Microwave Optomechanically Induced Transparency and Absorption Between 250 and 450 mK

    No full text
    International audienceHigh-quality microwave amplifiers and notch-filters can be made from microwave optomechanical systems in which a mechanical resonator is coupled to a microwave cavity by radiation pressure. These amplifiers and filters rely on optomechanically induced transparency (OMIT) and absorption (OMIA), respectively. Such devices can amplify microwave signals with large, controllable gain, high dynamic range and very low noise. Furthermore, extremely narrowband filters can be constructed with this technique. We briefly review previous measurements of microwave OMIT and OMIA before reporting our own measurements of these phenomena, which cover a larger parameter space than has been explored in previous works. In particular, we vary probe frequency, pump frequency, pumping scheme (red or blue), probe power, pump power and temperature. We find excellent agreement between our measurements and the predictions of input/output theory, thereby guiding further development of microwave devices based on nanomechanics

    Nanomechanical damping via electron-assisted relaxation of two-level systems

    No full text
    We report on measurements of dissipation and frequency noise at millikelvin temperatures of nanomechanical devices covered with aluminum. A clear excess damping is observed after switching the metallic layer from superconducting to the normal state with a magnetic field. Beyond the standard model of internal tunneling systems coupled to the phonon bath, here we consider the relaxation to the conduction electrons together with the nature of the mechanical dispersion laws for stressed/unstressed devices. With these key ingredients, a model describing the relaxation of two-level systems inside the structure due to interactions with electrons and phonons with well separated timescales captures the data. In addition, we measure an excess 1/f-type frequency noise in the normal state, which further emphasizes the impact of conduction electrons

    Microwave single-Tone optomechanics in the classical regime

    No full text
    | openaire: EC/H2020/647917/EU//ULT-NEMS | openaire: EC/H2020/714692/EU//UNIGLASS | openaire: EC/H2020/732894/EU//HOT | openaire: EC/H2020/824109/EU//EMPWe report on the quantitative experimental illustration of elementary optomechanics within the classical regime. All measurements are performed in a commercial dilution refrigerator on a mesoscopic drumhead aluminium resonator strongly coupled to a microwave cavity, using only strict single-Tone schemes. Sideband asymmetry is reported using in-cavity microwave pumping, along with noise squashing and back-Action effects. Results presented in this paper are analysed within the simple classical electric circuit theory, emphasizing the analogous nature of classical features with respect to their usual quantum description. The agreement with theory is obtained with no fitting parameters. Besides, based on those results a simple method is proposed for the accurate measurement of the ratio between microwave internal losses and external coupling.Peer reviewe
    corecore